Energia magnetostatyczna

W pierwszym przypadku dominuje energia magnetostatyczna, w drugim – energia ściany, w trzecim – obie energie są w przybliżeniu równe. Przypadek 1. Dla r <$.h wartość bezwzględna natężenia pola magneto- statycznego Hd, określona wzorem (9.8), może być aproksymowana wartością 4nMs. Natężenia Hd i Hw są równe na powierzchni cylindra o promieniu ra (jest to tzw. promień krytyczny)

Określanie warunków stabilności domeny cylindrycznej w płytce orto- ferrytu: a) w bardzo grubej płytce b) w bardzo cienkiej płytce c) w płytce średniej grubości w obecności pola polaryzującego Hb A – punkt równowagi niestabilnej, D, C – punkty równowagi stabilnej

kurczą się aż do zaniku. Oznacza to, że domeny cylindryczne w bardzo grubych płytkach są w ogóle niestabilne. Zależności te można odczytać również z rys. 9.9a. Przypadek 2. Dla r h wartość bezwzględna natężenia pola ściany Hw jest większa niż wartość bezwzględna natężenia pola odmagnesowania Hd, co ilustruje rys. 9.9b. Ponieważ jednak siła koercji ścian domenowych Hc *)

Siła koercji ścian domenowych jest to taka najmniejsza wartość natężenia pola magnetycznego, która powoduje ruch ścian domeny. zawiera się w granicach 8-40 A/m, więc proces wzrostu średnicy domeny będzie ograniczany tym silniej, im większe jest Hc. Domena będzie, stabilna wówczas, gdy osiągnie promień rc. Krytyczny promień domeny rc może być wyznaczony na podstawie znanej wartości parametru Hc z warunku Hc = Hw

You can skip to the end and leave a response. Pinging is currently not allowed.

Leave a Reply